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Abstract: The isomerization rates of a calix[4]arene in benzene and in chloroform have been calculated by
using molecular dynamics simulations. The reaction coordinate that is employed is based on the unstable
normal mode at the saddle point of the potential energy surface. The free energy as a function of this coordinate
has been calculated by means of umbrella sampling. Comparison of the free energies in the solvents with
those in vacuum reveals that both solvents destabilize the paco conformation and stabilize the transition state
region. In chloroform the calix[4]arene shows a stronger preference for the cone conformation than in benzene
or in vacuum. The isomerization rate has been determined by the reactive flux method. In benzene the
transmission coefficient is about a third higher than in chloroform. The calculated rates are in perfect agreement
with experimental data.

I. Introduction

Calix[4]arenes, cyclic arrays of four phenol rings, are versatile
molecules:1 they are used as building blocks in supramolecular
chemistry, they can selectively bind ions, they show nonlinear
optical behavior, and they can take on various conformations.
The latter property will be studied in this paper. In the “cone”
conformation all phenol rings are orientated in the same
direction, see Figure 1. The molecule is then stabilized by four
internal hydrogen bonds at the lower rim of the molecule. In
the partial cone conformation, “paco” for short, one of the
phenol rings is rotated with respect to the other three phenol
rings, see Figure 1. During the isomerization from cone to paco
the methylene groups between the phenol rings act as the hinges
around which the phenol ring rotates, and the hydroxyl moiety
moves through the central annulus.2 The paco conformation has
only two internal hydrogen bonds, making it energetically less
stable than the cone conformation by about 10 kcal/mol. The
energy barrier between the two conformations is about 15 kcal/
mol,3,4 so the isomerization rate is of the order of 100 s-1 at
300 K. This energy barrier makes it impossible to calculate the
isomerization rate by simply monitoring the conformation of
the molecule during a long molecular dynamics simulation
(MD).5 Currently simulations up to a dozen nanoseconds are
feasible, but the isomerization reaction requires a simulation of
the order of a second long to produce a reliable result. In this
contribution we apply statistical mechanical theories which make

it possible to calculate very slow reaction rates by simulations
of only a few nanoseconds.

In Section II we will see that reaction rates are conveniently
expressed as products of two factors. The first factor, the
transition state theory rate, depends on the free energy difference
between the reactant well and the transition state.6 Several
methods are available nowadays for calculating relative free
energies as a function of the conformation of a reacting
molecule. These methods and a wide variety of applications
are covered by several reviews.7-11 The second factor, the
transmission coefficient,6 corrects for so-called recrossings,
which are ignored in transition state theory, and at the same
time makes the reaction rate independent of the somewhat
arbitrary definition of the transition state. This coefficient has
been calculated for a number of isomerization reactions, as well
as for a few chemical reactions.12,13A third important quantity(1) (a) Gutsche, C. D.Calixarenes; Royal Society of Chemistry:

Cambridge, U.K. 1989. (b) Vicens, J. D.; Bo¨hmer, V., Eds.Calixarenes. A
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(2) Fischer, S.; Grootenhuis, P. D. J.; Groenen, L. C.; van Hoorn, W.
P.; van Veggel, F. C. J. M.; Reinhoudt, D. N.; Karplus, M.J. Am. Chem.
Soc.1995, 117, 1611-1620.

(3) Gutsche, C. D.; Bauer, L. J.J. Am. Chem. Soc.1985, 107, 6052-
6059.

(4) Araki, K.; Shinkai, S.; Matsuda, T.Chem. Lett.1989, 1989, 581-
584.

(5) Frenkel, D.; Smit, B.Understanding Molecular Simulation; Academic
Press: San Diego, CA, 1996; pp 176-178, 249-260.

(6) Hänggi, P.; Talkner, P.; Borkovec, M.ReV. Mod. Phys.1990, 62,
251-341.

(7) Jorgensen, W. L.J. Phys. Chem.1983, 87, 5304-5314.
(8) Beveridge, D. L.; DiCapua, F. M.Annu. ReV. Biophys. Biophys. Chem.

1989, 18, 431-492.
(9) Brooks, C. L., III; Case, D. A.Chem. ReV. 1993, 93, 2487-2502.
(10) van Gunsteren, W. F.; Beutler, T. C.; Fraternali, F.; King, P. M.;

Mark, A. E.; Smith, P. E. InComputer Simulations of Biomolecular Systems;
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Figure 1. Cone (left) and paco (right) conformations of a calix[4]-
arene.
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in reaction rate theory is the reaction coordinate.6 We have
recently introduced a convenient definition of this coordinate,
based on the unstable normal mode at the saddle point of the
potential energy surface.14,15This definition is computationally
efficient, and can be applied to a wide variety of reactions.

Conformations of calix[4]arenes2,16 and of numerous deriva-
tized calix[4]arenes have been studied in a series of molecular
mechanics studies in vacuum, using various force fields.2,16-20

In the case of the calix[4]arene, all calculations agree on the
order of stability of the four possible conformations, but they
do not agree on the energies of these conformations, nor on the
symmetry of the cone conformation. Wipff, Varnek, and co-
workers21,22 published a series of articles on simulations of
derivatized calix[4]arenes in several solvents, concentrating on
the complexation with neutral guests and cations. For uncom-
plexed calix[4]crown6 the conformation calculated to be the
most stable in vacuum differed from the most abundant
conformation observed experimentally in chloroform, indicative
of significant conformation dependent solvation energies.22

Recently, van Hoornet al.17 explained in a qualitative way the
discrepancy between the conformational distributions in vacuum
and in two solvents of two derivatized calix[4]arenes. Among
the properties of calix[4]arenes that have extensively been
measured are the isomerization rates in solvents. These rates
were found to strongly depend on the lower rim substituant,
and to a lesser extent on the solvent and the upper rim
substituant.3,4,16,17Calculations in vacuum, especially of mini-
mum energies and saddle point energies,2,19 may yield a
reasonably good estimate of the reaction rate, but, of course,
they cannot account for the solvent effect. Grootenhuiset al.,18

performing simulations of calix[4]arenes in water, observed
several transitions within 50 ps, but these astonishingly high
rates cannot be confirmed experimentally since calix[4]arene
does not dissolve in water.

Simulations with an explicit solvent model offer valuable
insights into the effect of the solvent on the equilibrium constant
and on the reaction rate.7-13,23 In some isomerization reactions
the solvent effect is prominent, as for proteins8,9 and for
molecules that are capable of including a solvent molecule,17

while in other cases it is of minor importance. In this
contribution we present calculations of the cone-paco equilib-
rium distribution and isomerization rate in two different solvents,
and compare the results with experiments.

II. Theory

II.A. Reaction Rate. The forward reaction rate is defined as
the fraction of reactants that turns into products per unit of time.6

We shall assume that the rate is predominantly determined by
the (free) energy barrier separating reactants from products. To
calculate the reaction rate, we first of all need a method of telling
reactants and products apart. We therefore introduce the reaction
coordinate,6,24,25 ê, which is taken to be a function of the
coordinates of the reacting molecule only. The reaction coor-
dinate is defined in such a way that it is larger thanêq for
products and smaller thanêq for reactants. Conformations with
ê ) êq are at the dividing plane between reactants and products,
the so-called transition state, which is located in the sparsely
populated area at the top of the energy barrier. The definition
of the reaction coordinate employed in this article is deferred
until the next section.

In Eyring’s transition state theory (TST) the rate is expressed
as the instantaneous product bound flux through the transition
state, normalized by the number of reactant molecules:6,25,26

whereê̇ ) dê/dt. The first factor on the right-hand side is half
the average absolute velocity of molecules at the transition state;
the half arises because only half the molecules crossing the
transition state have a positive velocity, i.e. are going from the
reactant state to the product state. Once the definition of the
reaction coordinate is chosen, this factor is readily evaluated.6

In the second factor we have used the probability distribution
of the reaction coordinate in the canonical ensemble,5

where H is the Hamiltonian,X is the collection of all 3N
coordinates of the reacting molecule and the solvent,pX are
the conjugate momenta,δ is the Dirac delta function,h is
Planck’s constant, andâ ) 1/kBT with T the absolute temper-
ature andkB Boltzmann’s constant. The partition functionQ
arises as the normalization factor of the distribution. The second
factor in eq II.1 is therefore to be interpreted as the probability
for a molecule in the reactant state to reach the transition state.
Two methods for calculating the probability distribution are
discussed in Section II.C.

It is a well-known fact that transition state theory overesti-
mates the true reaction rate.6,24-26 The underlying reason simply
is the implicit assumption of TST that each molecule crossing
the transition state with a positive velocity will end up in the
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(13) Anderson, J. B.AdV. Chem. Phys.1995, XCI, 381-431.
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5508.
(15) den Otter, W. K.; Briels, W. J.J. Chem. Phys.1997, 107, 4968-

4978.
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Trans. 21995, 2231-2242.
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Soc.1990, 112, 4165-4176.
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1995, 36, 6665-6668. (c) van Hoorn, W. P.; Morshuis, M. G. H.; van
Veggel, F. C. J. M.; Reinhoudt, D. N.J. Phys. Chem. A1998, 102, 1130-
1138.
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1993, 5, 826-829.
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kTST
f )

〈|ê̇|〉êq

2
P(êq)

∫-∞
êq

P(ê) dê
(II.1)

P(ê) )
1
Q

h-3N ∫∫δ[ê(X) - ê] exp[-âH(X,pX)] dX dpX (II.2)

13168 J. Am. Chem. Soc., Vol. 120, No. 50, 1998 den Otter and Briels



product well. However, chances exist that a molecule crossing
the transition state with a positive velocity rapidly recrosses
the transition state before settling in the product well, e.g. after
colliding with a solvent molecule. Likewise, a molecule crossing
the transition state with a negative velocity can recross the
transition state with a positive velocity to return to the product
state. Both these cases contribute to the TST rate, but neither
of them corresponds to a reaction, as the molecule returns to
its initial state. In textbooks this fact is compensated for ad hoc
by multiplying the TST rate with a transmission coefficient,κ,
whose value lies between zero and one:24

It is less well-known that the transmission coefficient can be
calculated exactly, under the condition that classical mechanics
adequately describes the motion of the molecule. From Onsag-
er’s regression hypothesis it follows that6,25

whereθ is the Heaviside step function,t and 0 denote the time,
and the broken brackes indicate a canonical average. The
denominator of eq II.5 is the average velocity of molecules
crossing the transition state at time 0 in the positive direction,
i.e. the first factor on the right-hand side of eq II.1. The
numerator is the average velocity of molecules crossing the
transition state at time 0 of those molecules that are in the
product state some timet after crossing the transition state,
regardless of the initial crossing direction. One readily sees that
in the limit of t going to zero the numerator equals the
denominator. At longer times the contributions of recrossing
trajectories will start to diminish the transmission coefficient
(it may temporarily increase, though, depending on the char-
acteristics of the reaction). After some time, which is longer
than the typical time of the molecular motions but much shorter
than the time constant of the reaction, the transmission coef-
ficient will stabilize at some plateau level,6,25 eq II.4. At this
point all molecules which crossed the transition state at time 0
have reached either the product well or the reactant well, and
will stay there for a long while until they incidentally escape.
The numerator of eq II.5 then contains contributions only from
those molecules that originated in the reactant well and have
settled in the product well, hence the name reactive flux method6

(RF). By inserting the plateau value of the transmission
coefficient into eq II.3 we find the exact rate. Note that the
transmission coefficient is easily calculated by MD simulations:5

first one samples configurations in the dividing plane, and next
one calculates relaxation runs to see where each of these
configurations ends up about a picosecond later.

From eq II.1 it follows that the TST rate constant depends
on the precise definition of the dividing plane between reactants
and products. Obviously, the dividing plane must lie near the
top of the energy barrier to cohere with the intuitive notion of
reactants and products. But there is no clear reason why one
plane in this region should be preferred over another, or to put
it differently, why one TST rate is better than another. The only
thing one knows for sure is that even the lowest TST rate still
is an upper limit to the true rate (sinceκ e 1). It has been shown
that the reactive flux method does not suffer from these
problems: provided the dividing plane lies near the top of the

barrier, the reactive flux method will always yield the same
rate constant.5,25,27 The only problem is that the number of
relaxation runs required to accurately calculate the transmission
coefficient increases exponentially as the plateau value of the
transmission coefficient decreases. We therefore now set forth
to find a reaction coordinate that yields a high plateau value,
i.e. a low TST rate.

II.B. Reaction Coordinate. A particularly important point
on the potential energy surface of the reacting system is the
saddle point, the lowest point on the top of the energy barrier:
any molecule going from the reactant state to the product state
must at least rise to the energy of the saddle point to over-
come the reaction barrier.24 According to the Boltzmann distri-
bution, molecules crossing the barrier will do so preferably with
the least amount of energy, so the majority of the molecules
will surmount the barrier in the vicinity of the saddle point. It
is only natural, therefore, to introduce a reaction coordinate
based on the properties of the saddle point, as will be done
next.

Suppose we have located the first-order saddle point,R0, of
the potential energy surface of anN atom molecule. For
notational convenience and to make the results more transparent,
we have collected all 3N coordinates into a single mass-weighted
column vector,R0 ) (xm1(r1

0)T, ..., xmN(rN
0)T)T, wherer i

0 is
the column vector of the coordinates of atomi with massmi.
We shall assume that there is no external potential acting on
the molecule. At the saddle point the gradient of the potential
energy is zero, so a Taylor expansion up to second order of the
potential energy yields an energy of

at a pointX close to the saddle point. The Hessian matrix,H,
contains all second derivatives of the potential energy with
respect to the mass-weighted Cartesian coordinates. This matrix
is then diagonalized to find its eigenvectors and eigenvalues,
just as one normally does for a molecule at the potentiel energy
minimum.24

The eigenvectors of the Hessian can be subdivided into two
groups. The first group contains the three eigenvectorsEk which
correspond to a rigid body translation and the three eigenvectors
Sk which correspond to a rigid body rotation. In the absence of
an external field, one easily sees that the potential energy of
the molecule does not change during these moves, hence the
eigenvalues of these six eigenvectors are all equal to zero. The
second group contains the 3N - 6 eigenvectors with a non-
zero eigenvalue, the normal modes of vibration.24 These
vibrations are, in first order approximation, independent of one
another; the eigenvalues are the squares of the frequencies of
vibration, which are experimentally accessible. If the Hessian
were to be evaluated at a local minimum of the potential energy
surface, then all eigenvalues would be positive: move along
any normal mode, starting fromR0, and the potential energy
will rise. At a first-order saddle point, however, there is exactly
one eigenvector with a negative eigenvalue, i.e. an imaginary
eigenfrequency. Move along this direction, henceforth called
the unstable normal modeQr, and the potential energy will fall.
In other words, in this direction the molecule is going from the
saddle point toward the product (or reacant) well. As an
illustration of this unstable normal mode, the resulting atomic
displacements of a calix[4]arene at the cone to paco saddle point
are depicted in Figure 2.

(27) Miller, W. H. Acc. Chem. Res.1976, 9, 306-312.

kf ) κkf
TST (II.3)

κ ) κ(t), trecross< t < 1/kf (II.4)

κ(t) )
〈δ[ê(0) - êq]ê̇(0)θ[ê(t) - êq]〉

〈δ[ê(0) - êq]ê̇(0)θ[ê̇(0)]〉
(II.5)

Φ(X) ) Φ(R0) + 1/2(X - R0)T H(X - R0) (II.6)
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We now define the reaction coordinate as the displacement
of the molecule, with respect to the saddle point, along the
unstable direction. For a molecule with coordinatesX we thus
arrive at the projection

The particularly simple form of this equation arises because
the eigenvectors of the Hessian are orthogonal. Conventional
TST calculations6,26 in which the rate is obtained from the
positive eigenfrequencies at the energy minimum and the saddle
point are in fact based on this definition of the reaction
coordinate.

At this point the reader might argue that the above definition
of the reaction coordinate is intuitively appealing, but that under
simulation conditions the definition is useless since it is not
invariant under rotations. To solve this problem we exploit
the freedom in choosing the saddle point configuration: the
rotated saddle point,AR0 ) (xm1(ar1

0)T, ..., xmN(arN
0)T)T,

where a is an ordinary three-dimensional rotation matrix, is
also a saddle point. One readily verifies that the eigenvectors
of the Hessian are rotated in the same manner, so the unstable
normal mode of the rotated saddle point isAQr. By in-
serting these two rotated vectors into eq II.7, the reaction
coordinate becomes a function of the coordinatesX and the
rotation matrixa,

We now must find a connection betweenX, R0, anda to make
the definition of the rotation matrix, and hence the definition
of the reaction coordinate, unequivocal. Analogous to eq II.8,
we may calculate the “rotation” of the molecule with respect
to AR0 as the projection of the displacementX - AR0 onto
theASk, the three rotated rotational eigenvectors of the Hessian.
The correct rotation matrixa is then defined as the one that
makes all three projections simultaneously equal to zero. A more
elaborate discussion of this topic, and an algorithm to calculate
the rotation matrix are given elsewhere.14

II.C. Free Energy. It is common practice to convert
probability distributions and partition functions, as defined by
eq II.2, into free energies,

where c is an irrelevant constant arising from the partition

function Q. The RF rate then reads15

where we have combined eq II.1 through II.3. HereAR is the
free energy of the reactant well, obtained by replacingP(ê) in
eq II.9 by the denominator of the second factor in eq II.1. With
the reaction coordinate as defined in Section II.B we find|∇xê|
) 1 kg-1/2 m-1 at the saddle point, and this value increases
only slightly on taking the average over the saddle plane. In
the experimental literature a slightly different definition of the
free energy is commonly used, by writing a measured reaction
rate as

By comparing the two above expressions we find

The second term on the right-hand side removes fromA(êq)
the contribution of the velocityê̇, so the free energy difference
∆Aq is based on the probability of finding a molecule at the
transition state with zero crossing velocity, while the free energy
A(êq) is based on the probability for the molecule to be at the
transition state regardless of the crossing velocity. Notice that
∆Aq also includes a contribution from the transmission coef-
ficient, while A(êq) does not.

Perhaps the best known method of calculating the free energy
of a moleculein Vacuo, i.e. AR, is to perform a normal mode
analysis.24 Contributions from the 3N - 6 eigenfrequencies of
vibration, the inertia tensor, and the total mass of the molecule
give the desired result. The assumptions underlying this theory
are that the amplitudes of the vibrations are small, and that there
is no coupling between rotations and vibrations. As we have
shown elsewhere,15 it is straightforward to calculate the free
energy as a function of the reaction coordinate under the same
conditions. The basic task is to calculate the lowest energy
conformation and the 3N - 7 eigenfrequencies of vibrations in
the hyperplane of configurations with a prescribed value of the
reaction coordinate. The method is reliable and fast for
calculationsin Vacuo, but it is of little practice for a molecule
in a solvent, since the inclusion of solvent effects in the theory
is virtually impossible.

An alternative method for calculating the free energy would
be to directly sample the probability distribution of the reaction
coordinate of the solvated molecule in a long simulation.
Obviously, the height of the energy barrier between reactants
and products would create insurmountable difficulties. The
barrier region would be sampled very poorly, and the molecule
might even stay in one conformation for the entire run. In fact,
this is precisely the problem that we try to avoid by using
reaction rate theory. Suppose now that we add to the existing
potential energy surface a so-called umbrella potential,5,28U(X).
The probability distribution of the system with the umbrella
reads as

(28) (a) Kumar, S.; Bouzida, D.; Swendsen, R. H.; Kollman, P. A.;
Rosenberg, J. M.J. Comput. Chem.1992, 13, 1011-1021. (b) Bartels, C.;
Karplus, M.J. Comput. Chem.1997, 18, 1450-1462.

Figure 2. Saddle point configuration of a calix[4]arene. The arrows
attached to the atoms indicate how the atoms move under the unstable
normal modeQr.

ê )
(X - R0)‚Qr

Qr‚Qr
(II.7)

ê )
(X - AR0)‚AQr

Qr‚Qr
(II.8)

A(ê) ) -kBT ln P(ê) + c (II.9)

kf ) κxkBT

2π
〈|∇xê|〉êq e-[A(êq)-AR]/kBT (II.10)

kf )
kBT

h
e-∆Aq/kBT (II.11)

∆Aq ) A(êq) - kBT ln[x h2

2πkBT
〈|∇xê|〉êq] - AR - kBT ln κ

(II.12)
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In case the umbrella is a function of the reaction coordinate
only, the unbiased distribution may be calculated according to

wherec is a proportionality constant. The probability distribution
of ê in the biased run is thus seen to be easily converted into
the probability distribution of the unbiased run. This holds true
regardless of the umbrella potential used, so we are free to
choose the umbrella that suits us the best. The best choice is
U(ê) ) -A(ê), since it rendersPU independent ofê. In the
biased run the barrier between reactants and products then
effectively vanishes, and both configurations can be sampled
efficiently with a single long simulation. In such a simulation
the reaction coordinate behaves like a diffusing particle. An
obvious problem is that we do not knowA(ê) in advance, but
by making a good initial guess, as in the above discussed normal
mode method, we can get close enough for the method to work
properly. If the long simulation samples the entire range of the
reaction coordinate but the distribution is not reasonably flat,
then the sampled distributionPU may be converted into a
potential by means of eq II.9, and this potential may then be
added to the existing umbrella to define a new trial umbrella
for a second simulation. Alternatively, we may choose the
umbrella in such a way that only a small range ofê, a so-called
window, is sampled. Combining the probability distributionsP
from different windows by making them match in the region
where the windows overlap one another then yields the desired
result. Techniques for automated improvement of the umbrella
by using all previous simulations are available.28

III. Results

The calix[4]arene was modeled with the all-atom CHARMM
parameter set 22.2 The saddle points on the potential energy
surface of a calix[4]arenein Vacuo were calculated by using
the conjugate peak refinement algorithm2,29 implemented in
QUANTA/CHARMM.30 All other calculations were done with
GROMOS87,31 which we adapted to meet our specific needs.
The saddle points were transported to GROMOS87, and then
further refined by using full-dimensional Newton-Raphson to
minimize the length of the gradient of the potential down to
1.8× 10-10 kcal mol-1 Å-1. All normal modes were calculated,
and their eigenfrequencies were found to be almost identical to
the frequencies obtained by QUANTA/CHARMM after a
similar refinement. The positive value of the reaction coordinate
for the cone to paco transformation was chosen to correspond
to the paco conformation. In all calculations the relative
dielectric constantεr was set equal to one, and no cut-off radius
was used for nonbonded interactions.

III.A. Free Energy. The minimum energy conformations as
a function of the reaction coordinate for the moleculein Vacuo
were calculated by using Newton-Raphson in which only the
reaction coordinate was kept at a prescribed value. In most cases
the projection of the gradient onto the plane of constantê, i.e.
the part of the gradient that is minimized under the constraint

on ê, reached 10-9 kcal mol-1 Å-1. For each conformation a
constrained normal mode analysis was performed to calculate
the free energy as a function of the reaction coordinate at 300
K. Both the minimum energy and the free energy functions are
plotted in Figure 3. From the latter function follows a free energy
difference between the paco well and the cone well of 7.9 kcal/
mol. The free energy difference between the saddle plane and
the cone well,A(0) - Acone) 13.1 kcal/mol, results in the rate
kf

TST ) 174 s-1.
The free energy function obtained by the normal mode

analysis was used as the umbrella potential in a vacuum
simulation. Since the free energy curve is rather steep at the
outermost values of the range of the reaction coordinate, and
since it is a little noisy in these regions because of problems
with the minimization procedure, we decided to smooth the
umbrella by replacing it with a fit. Previously we noticed that
small deviations in the fit were very much reflected in the
probability distributionPU. Therefore, the free energy function
was fitted with two 15th-order polynomials, one for the cone
well and the saddle point region, and one for the paco well and
the saddle point region. In the saddle point region a third-order
polynomial was used to make a smooth transition from one fit
to the other. The motion of the reaction coordinate was limited
to the region between roughly-1.8 and+1.6 to prevent the
molecule from sampling highly improbable conformations, and
to reduce the chances of “spontaneous” conformational transi-
tions due to the high stress in the molecule at these extremes.
This was done by adding two Fermi-Dirac-like functions to
the umbrella, chosen such that they were virtually zero in the
region of interest and rapidly increased at the borders. During
the simulation the lengths of the bonds involving a hydrogen
atom were constrained by using SHAKE.32 Langevin dynamics33

with a friction constant of 1 ps-1 was used to maintain a
temperature of 300 K, to promote the energy exchange between
vibrational modes, and to make the molecule rotate with a
variable angular momentum. The simulation lasted 30 ns, with
a time step of 2 fs. The probability distribution of the biased
run was very flat, see Figure 4, indicating that the normal mode
based free energy is an excellent approximation of the real free
energy. Inserting the distribution and the umbrella in eq II.14,
we find A(0) - Acone ) 12.9 kcal/mol andkf

TST ) 241 s-1.
(29) Fischer, S.; Karplus, M.Chem. Phys. Lett.1992, 194, 252-261.
(30) Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; States, D. J.;

Swaminathan, S.; Karplus, M.J. Comp. Chem.1983, 4, 187-217.
(31) Berendsen, H. J. C.; van Gunsteren, W. F.GROMOS Reference

Manual; University of Groningen: Groningen, The Netherlands, 1987.

(32) Ryckaert, J.-P.; Ciccotti, G.; Berendsen, H. J. C.J. Comput. Phys.
1977, 23, 327-341.

(33) Allen, M. P.; Tildesley, D. J.Computer Simulation of Liquids;
Oxford Science Publications: Oxford, UK, 1987; pp 152-155, 259-260.

PU(ê) ) 1
QU

h-3N∫∫δ[ê(X) - ê]exp[-â{H(X,pX) +

U(X)}] dX dpX (II.13)

P(ê) ) cPU(ê)eâU(ê) (II.14)

Figure 3. Minimum energy (dotted) and free energy as calculated by
means of umbrella sampling (solid) as a function of the reaction
coordinate for a calix[4]arenein Vacuo.
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During the simulation we encountered the problem that
molecules in theê ≈ 0.5 region occasionally made transitions
from a paco conformation to a “1,2-alternate” conformation.
In this conformation two neighboring phenol rings are pointing
upward and the other two are pointing downward, allowing for
two internal hydrogen bonds. Once the molecule reached the
1,2-alternate conformation it never returned to the paco con-
formation. There are two ways for a paco to transform into a
1,2-alternate, depending on whether the second rotated phenol
ring neighbors the first rotated phenol ring on the left or on the
right.15 Both 1,2-alternates have the same energy, but the two
paco to 1,2-alternate transition states have slightly different
energies because of the orientation of the hydrogen bonds. The
reason for the occurrence of the unwanted side reactions was
that the umbrella lowered not only the cone to paco transition
state but also the two paco to 1,2-alternate transition states. To
prevent these rare side reactions we expanded the umbrella by
adding two Fermi-Dirac-like potentials, each depending on the
reaction coordinate of one of the saddle points of the paco to
1,2-alternate barrier. Equations II.13 and II.14 were adapted
accordingly. These added potentials were found to hardly effect
the motion of the molecule for most of the time, but they did
prevent transitions from a paco to a 1,2-alternate conforma-
tion.

To calculate the isomerization rate of a calix[4]arene dissolved
in benzene, we first simulated a box of pure benzene. We used
the Lennard-Jones parameters and the charges of the rigid
benzene model by Jorgensen and co-workers,34 which were
previously used in Monte Carlo34 and MD35 simulations. The
force field was augmented by adding bonded-interaction terms.
Since the nonbonded parameters of the CH groups in benzene
are identical with those of the 12 CH groups in the calix[4]-
arene, we decided to use the relevant bonded parameters of the
calix[4]arene for the benzene as well. The cubic simulation box
contained 343 molecules. A thermostat37 kept the temperature
at 300 K with a time constant of 0.1 ps. The C-H bond lengths

were constrained by using SHAKE.32 Every tenth simulation
step the list of interacting charge groups ()CH) was updated
to contain all groups within 13 Å of each other; the interactions
between these groups were calculated each time step. At the
same time, the interactions of charge groups at a distance
between 13 and 16 Å was calculated; since this interaction
changes relatively little during 10 steps it was treated as a
constant force/energy that was added to the pair-list-based
interactions calculated every time step.33 No long-range cor-
rections were applied. The box was first equilibrated at a
constant volume corresponding to the experimental density.38

Then a manostat37 was turned on to keep the pressure at 1 atm,
using a typical time constantτp ) 0.5 ps and the experimental
value of the isothermal compressibility,38 â ) 9.7× 10-10 Pa-1.
Immediately the volume of the box decreased by about 15%.
At this new value the volume oscillated with a period of 10 ps.
By increasingτp to 5.0 ps, in which case ourâ to τp ratio
equalled the one used by Mu¨ller-Plathe,35 the box regained its
proper density. We conjecture that the manostat failed because
of the shape and corresponding potential of the benzene
molecule.

After equilibrating the benzene box at 1 atm, the calix[4]-
arene and the solvent were combined into a single box, a
truncated octahedron of about 52 nm3 containing 343 benzene
molecules. This box was thoroughly equilibrated, at constant
volume first and at constant pressure next, before the actual
production run began. The normal mode based umbrella, which
performed so wellin Vacuo, was used as the umbrella of the
solvated molecule. The resulting probability distribution, sampled
in 0.75 ns of simulation time, is shown in Figure 4. Comparison
of this distribution with the one from the simulation in vacuum
beautifully reveals the solvent effect: the probability atê ≈
-0.4 increases drastically, while the paco conformation is
depleted. To get better statistics, two additional simulations were
run with the same umbrella in which the reaction coordinate
was limited to sample a single well only. The three distributions
were combined into a single one by matching the probabilities
in the regions which were covered by two distributions. As a
check, this distribution was transformed into a potential by eq
II.9, and added to the existing umbrella. With this new umbrella
the distribution in the final run was, indeed, satisfactorily flat.
The free energy difference between the paco and the cone was
calculated to be 8.4 kcal/mol, and the difference between the
saddle plane and the cone is 12.5 kcal/mol, from which finally
followed kf

TST ) 471 s-1.
As a comparison, in Figure 4 we have plotted the probability

distribution of a calix[4]arene in chloroform. This distribution
was calculated previously, using the same techniques as
described here, but with a different umbrella.15 We converted
this distribution into the distribution that we would have obtained
in chloroform with the current vacuum umbrella, i.e. the one
that was also used in benzene. From the plot it follows that
both solvents destabilize the paco conformation. The region
around the saddle point is stabilized by both solvents, but
appreciably more so by benzene than by chloroform. The main
difference between the two solvents occurs in the cone region,
which is strongly promoted in chloroform but hardly in benzene.
The resulting free energy difference between the saddle plane
and the cone well in chloroform, 13.6 kcal/mol, therefore is
larger than that in benzene, and the ratekf

TST ) 84 s-1 is
smaller than in benzene. At 9.1 kcal/mol the free energy
difference between cone and paco is also larger.

(34) (a) Jorgensen, W. L.; Severance, D. L.J. Am. Chem. Soc.1990,
112, 4768-4774. (b) Jorgensen, W. L.; Laird, E. R.; Nguyen, T. B.; Tirado-
Rives, J.J. Comput. Chem.1993, 14, 206-215. (c) We used the Lorentz-
Berthelot combination rules for the interaction between unlike atoms.

(35) Müller-Plathe, F.Macromolecules1996, 29, 4782-4791.
(36) The reaction coordinate was constrained to zero when sampling the

transition state, while in the other two simulations the reaction coordinate
was not constrained.

(37) Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.; DiNola,
A.; Haak, J. R.J. Chem. Phys.1984, 81, 3684-3690.

(38) Weast, R. C., Ed.Handbook of Chemistry and Physics, 50th ed.;
The Chemical Rubber Co.: Cleveland, OH, 1969; pp C-140, F-12.

Figure 4. Probability distributionsPU in Vacuo (solid), choroform
(dashed), and benzene (dotted), all corresponding to the same umbrella.
The areas under the curves are equal.
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III.B. Structural Analysis of the First Solvation Shell. From
the above results it is clear that the equilibrium distribution and
the reaction rate are predominantly determined by the internal
energy of the calix[4]arene and to a lesser extent by its
interactions with the solvent. It is difficult to determine in which
way exactly the interactions between the solute and the solvent,
and the induced changes in the entropies and internal energies
of the solute and the solvent, affect the reaction.

One way to shed some light on the mutual influence between
solute and solvent is by studying the distribution of the solvent
in the first solvation shell around the solute. In Figure 5 scatter
plots are given of the positions of the chloroform molecules in
the first solvation shell around the calix[4]arene molecule. These
plots were obtained from simulations of about 2 ns each. During
the simulations the calix[4]arene was restricted to sample the
cone well, the transition state, and the paco well, respectively.36

All bonds in which a hydrogen atom takes part were constrained.
The solvent molecules were completely rigid. The coordinates
of the entire system are saved every 0.1 ps. For the analysis

coordinates were translated to the center of mass of the calix-
[4]arene, and rotated bya-1 where a is the rotation matrix
discussed in Section II.B. The positions of the carbon atoms of
all chloroform molecules within 0.75 nm of the origin are plotted
in Figure 5. Also plotted are the average positions of the atoms
constituting the calix[4]arene.

The plots in the left column of Figure 5 clearly show that
the cone configuration captures a chloroform at the upper rim.
Note that this chloroform molecule is not inside the cavity, as
is observed inp-tert-butylcalix[4]arenes complexing with ions
and small molecules,17,21,22but hovering above the cavity. The
captured chloroform molecule is found to constantly move and
rotate, with the hydrogen pointing toward the calix[4]arene in
one third of the frames, indicating that the dipole of the
chloroform molecule has only a minor influence on its orienta-
tion. Similarly, at the lower rim the polar hydroxyl groups are
not capable of orienting the polar chloroform. Moreover, hardly
any structuring of the positions of the chloroform molecules
occurs. The plots in the middle column and those in the right

Figure 5. Density distribution of the carbon atom of chloroform, after correction for the orientation of the calix[4]arene. From left to right are
shown the cone, transition state, and paco conformation. The middle row gives a side view, the upper row a top view of the carbons with a positive
z-coordinate, and the bottom row a top view of the carbons with a negativez-coordinate. The calix[4]arenes shown are averaged over the simulation.
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column show that the transition state and the paco also induce
quite some structure in the solvent, but that they do not hold
on to a chloroform molecule with the tenacity of the cone
conformation. Only the transition state manages to slightly
increase the chloroform density at the bottom of the calix[4]-
arene, just below the rotating phenol group.

In Figure 6 the radial distribution function of chloroform
molecules around the cone, the transition state, and the paco
are depicted. In the case of the cone a sharp peak is observed
that can be entirely attributed to the captured chloroform at the
upper rim. The first minimum in the radial distribution function
corresponds to a barrier in the potential of mean force39

separating the captured molecule from the bulk of the solvent.
On average the captured molecule is exchanged with another
solvent molecule once every 0.5 ns. From the other two curves
in Figure 6 it is obvious that only the paco has a slight tendency
to capture a chloroform molecule. To understand why neverthe-
less the transition state is stabilized by the solvent relative to
the paco, we have analyzed the interaction energies of the
solvated chloroform molecule with the calix[4]arene. It turned
out that these energies have the same minimized value for both
configurations, but that the volume corresponding to the
minimum interaction energy is much larger for the transition
state than for the paco.

Similar simulations to the above have been done with a calix-
[4]arene in benzene. The distributions of the centers of mass of
the benzene molecule around the calix[4]arene are very similar
to those in Figure 5, the main difference being that all maxima
and minima are slightly further away from the center of the
calix[4]arene due to the size of benzene. Again, the cone
conformation captures a benzene molecule. This molecule is
standing upright, perpendicular to the annulus of the calix[4]-
arene, with a slight preference for the orientation with two CH
groups pointing toward the calix[4]arene. In comparison with
the chloroform captured at this position, the benzene is relatively
weakly bound, while it is exchanged by another benzene roughly
once every 0.1 ns. The explanation of the solvent effect in Figure
4 in this case is similar to the above, with the exception that
this time the binding interaction between the cone and the
captured benzene molecule is much weaker.

III.C. Transmission Coefficient. To calculate the transmis-
sion coefficient, eq II.5, conformations needed to be sampled
in the transition plane. One thousand conformations were created

by means of an MD simulation of a solvated calix[4]arene
during which the value of the reaction coordinate was con-
strained to zero with an algorithm similar to SHAKE;14 atomic
coordinates and velocities were saved every picosecond. Each
of these configurations was used as the starting point of a 2 ps
relaxation run. At the start of every relaxation run the velocity
of the reaction coordinate, which was zero during the constrained
run, was replaced by a new velocity drawn from a velocity-
weighted Maxwell-Boltzmann distribution.40 The transmission
coefficient as a function of time is shown in Figure 7. The dotted
line shows the contribution to the transmission coefficient from
those molecules which cross the transition state at time zero
with a positive velocity and arrive in the product well, or to
put it differently, the fraction of the product bound flux through
the transition state that ends up in the product well. Likewise,
the dashed line gives the contribution to the transmission
coefficient from those molecules which cross the transition state
at time zero with a negative velocity and end up in the product
state; these molecules must therefore have crossed the transition
state at least once. Both curves live up to their expectation: they
start at respectively one and zero, at short times they decrease
because of molecules recrossing the transition state, and at longer
times they settle at a stable level. The solid line, the transmission
function, is obtained by summing these two contributions. After
2 ps a plateau of 0.56 is reached. In combination with the
previously calculatedkf

TST, the true reaction rate is then found
to bekf

RF ) 264 s-1.
Similar simulations of calix[4]arene in chloroform yieldedκ

) 0.43, which together with the transition state value yielded
kf

RF ) 36 s-1. The influence of the solvent is seen to be more
prominent in the free energy differences than on the transmission
coefficients.

All results so far have been collected in Table 1, together
with a few more results from vacuum simulations. Simulations
in Vacuowith the same transition state produced a transmission
coefficient that arrived at a plateau of 0.92 after 0.6 ps, indicating
that in this case the TST rate is an excellent approximation of
the real rate.14 After about 0.8 ps the transmission function
started to decrease again, and eventually settled at a second

(39) Rey, R.; Hynes, J. T. J.Phys. Chem.1996, 100, 5611-5618.

(40) In eq II.5 the velocity of the reaction coordinate ought to be drawn
from a Maxwell-Boltzmann distribution, exp[-âê̇2], but from the equation
it follows that it is also possible to draw from the weighted distributionê̇
exp[-âê̇2]. The advantage of doing so is that fewer relaxation runs are
needed for the averages to converge.

Figure 6. Radial distribution function of the carbon atom of chloroform
relative to the center of mass of the calix[4]arene for the cone (solid
line), paco (dashed line), and transition state (dotted line) configurations.

Figure 7. Transmission coefficient (solid) of a calix[4]arene in
benzene. The dotted (dashed) line gives the contribution of molecules
that settle in the paco conformation after crossing the transition state
with a positive (negative) transient velocity.
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plateau of 0.82. This decrease was caused by molecules which
left the paco well after having made one full oscillation in this
well; this would not have occurred if the paco well had acted
as a perfect sink.

The equilibrium conformational distribution and the isomer-
ization rates of calix[4]arenes in solvents have been measured
with 1H NMR.3,4,16,17,41It was found that for the particular
molecule studied here, the paco is too short-lived to be
detectable. The measured rate constants therefore correspond
to the cone to inverted cone reaction, i.e. a process in which all
four phenol rings rotate. This reaction consists of four steps,
with one phenol ring rotating in each step.2 If we assume these
steps to be independent, the reaction scheme becomes

where C, P, and A denote respectively cone, paco, and alternate,
and where primes indicate conformations in which the majority
of the phenols are pointing downward. In good approximation
the overall cone to inverted cone rate constant is found to be
related to the calculated cone to paco rate by15 kCC′ ≈ 3kf

RF.
Gutsche and Bauer3 measured the coalescence temperature

with temperature-dependent1H NMR and derived the isomer-
ization rate at this temperature from the chemical shift. They
converted the rate into a free energy by

For calix[4]arene in benzene they found∆Aq ) 13.8 kcal/mol
andTcoalescence) 15 °C. With these data we have calculated the
isomerization rate at the coalescence temperature. By using eq
II.11 and assuming that the free energy is independent of the
temperature, we then found a rate of 607 s-1 at 300 K for the
cone to inverted cone reaction, hence a rate of 202 s-1 for the
cone to paco reaction. The data for a calix[4]arene in chloroform
were converted likewise, and yielded a rate of 30 s-1. Araki et
al.4 measured the reaction rate and the free energy of a calix-
[4]arene in chloroform as a function of temperature, resulting
in a rate of 8 s-1 at 300 K. From their data it followed that the
entropic contribution to the free energy is of minor importance
in the above extrapolations, at most equal to about 0.1 kcal/
mol, which is comparable with the uncertainty of the∆Aq. All
data are summarized in Table 1. The computed reaction rates
compare very well with the measured rates, the former being
slightly higher.

The agreement of the calculated with the experimental
reaction rates adds to the confidence that one may have in the
force fields that have been used. Obviously, reaction rates are
most sensible to the precise value of∆Aq. Apparently the present
force field has the capability of reproducing a reasonable energy
barrier between the cone and paco conformation, and is flexible
enough to allow for enough entropy to turn this energy barrier
into a good free energy barrier. The fact that two opposite
solvent effects with two different solvents are quantitatively
reproduced is a remarkable achievement of the force field.

IV. Conclusions
The isomerization rate of a calix[4]arene in benzene and in

chloroform has been studied with molecular dynamics simula-
tions. The free energy as a function of the reaction coordinate
was calculated by means of umbrella sampling. The rate
constants obtained with the reactive flux method were in good
agreement with the experimental values. In chloroform the cone
conformation was found to be stabilized by the solvent,
appreciably reducing the reaction rate with respect to the vacuum
value. The reaction coordinate defined as the displacement along
the unstable normal mode at the saddle point of the potential
energy surface was shown to be very convenient in these
calculations. An excellent first guess at the umbrella potential
was obtained by a straightforward normal mode analysis. The
same reaction coordinate can, in principle, be applied to
numerous reactions, including chemical reactions. In the case
of an SN2 reaction, for instance, the harmonic analysis has to
be performed on the transition state, including the nucleophile
as well as the leaving group.

JA9741739

(41) (a) Happel, G.; Mathiasch, B.; Ka¨mmerer, H.Makromol. Chem.
1975, 176, 3317-3334. (b) Gutsche, C. D.; Bauer, L. J.Tetrahedron Lett.
1981, 22, 4763-4766. (c) Groenen, L. C.; van Loon, J.-D.; Verboom, W.;
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Table 1. Computed and Experimental Rates for the Cone to Paco
Conversion

solvent and method kTST/s-1 κ kRF/s-1 kexp/s-1

vacuum normal mode analysis 174
vacuum umbrella sampling,

t ) 0.6 ps
241 0.92 222

vacuum umbrella sampling,
t ) 2.0 ps

241 0.82 198

chloroform umbrella sampling 84 0.43 36 30,a, 8b

benzene umbrella sampling 471 0.56 264 202a

a Data by Gutsche and Bauer,3 converted to 300 K.b Data by Araki
et al.4

C {\}
k1

k2
P {\}

k3

k4
A {\}

k4

k3
P′ {\}

k2

k1
C′ (III.1)
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